The Rise of Visual Intelligence: Top 5 AI Products to Watch in 2024
The power of visual intelligence (VI) is transforming industries. By leveraging the capabilities of ...
3 Mins read
Posted on Jun 14, 2024
June 4, 2024
4 Mins read
In the realm of industrial manufacturing, ensuring the quality and reliability of components is paramount. Components integral to many mechanical systems must be rigorously validated for defects such as missing handles, bolts, or screws. The challenge lies in detecting these defects efficiently and accurately. This article delves into how advanced machine learning techniques can be leveraged to implement a robust detection and alert system for identifying defective components.
About Scanflow
Scanflow for MotorGear Defect Detection is an AI-powered solution tailored for identifying defects in gearmotors within industrial settings. It employs advanced machine learning algorithms and intelligent image processing to streamline the detection process, ensuring high accuracy and efficiency.
Scanflow seamlessly integrates with existing workflows and software infrastructure, supporting a wide range of platforms and development frameworks for easy deployment. Additionally, its offline functionality enables uninterrupted operation, even in areas with limited connectivity, ensuring continuous data capture and enhancing operational efficiency.
By accurately detecting defects in gearmotors, Scanflow helps manufacturers maintain high standards of quality control, reducing manual inspection efforts and minimizing production delays. Furthermore, its data security features, including encryption and offline storage, mitigate safety concerns and prevent unauthorized access, ensuring the integrity and confidentiality of sensitive information related to gearmotor inspection processes.
Objective
Our goal is to create an automated system that detects and alerts relevant personnel during the validation process of components exhibiting specific defects. This system aims to enhance accuracy, reduce manual inspection efforts, and ensure only quality-assured components proceed to the next stage of production.
Strategic Approach
Training Result
Training Hardware
The model training was conducted using high-performance hardware to expedite the process. This hardware configuration enabled us to train the model efficiently and effectively. The specifications of the hardware used are as follows:
Processor – Intel i7 14700KF with 28 CPUs @ 3.4 GHz
Memory – 32GB RAM
Graphics Card – NVIDIA RTX 4090
The training process took approximately 38 hours to complete in the specified hardware configuration. Utilizing such robust hardware ensures that the model training is both time-efficient and capable of handling the complexity of the task.
Real-Time Use Case
To demonstrate the model’s capabilities, we present images of a Helical Bevel Gear Motor. One image represents a defective motor, and the other represents a non-defective motor. The model’s ability to distinguish between these two scenarios is critical for practical deployment.
In the defective gear motor image, the model identifies missing handles, bolts, or screws by highlighting these areas with bounding boxes. In contrast, the non-defective gear motor image shows no highlighted regions, indicating that the component is free of defects.
Deployment and Real-Time Alerts
With the model trained and validated, the final step is deployment. Integrating the model into the component validation workflow involves several steps:
This integration not only streamlines the validation process but also significantly reduces the risk of defective gear motors reaching the market. The real-time alert mechanism ensures that defects are addressed promptly, maintaining the overall quality of the components.
Conclusion
By adopting this advanced detection system, manufacturers can achieve a new level of precision in component quality control. Combining machine learning and real-time alert mechanisms ensures that only high-quality products proceed through the production line. This approach not only enhances operational efficiency but also maintains the integrity and reliability of components.
By implementing these cutting-edge techniques, manufacturers can ensure rigorous quality control and uphold the highest standards in component production. Integrating machine learning in defect detection represents a significant step forward in industrial manufacturing, promising to improve product quality and reduce operational costs.
In summary, our advanced detection system provides a comprehensive solution to the challenge of identifying defective components in gear motors. By leveraging the power of machine learning and high-performance hardware, we can deliver a robust and efficient system that meets the demands of modern manufacturing.
The Rise of Visual Intelligence: Top 5 AI Products to Watch in 2024
3 Mins read
Posted on Jun 14, 2024
Top 5 Intelligent Data Capture Solutions Companies in 2024
3 Mins read
Posted on Dec 29, 2023
This privacy policy sets out how Scanflow uses and protects any information that you give Scanflow when you use this website. Scanflow is committed to ensuring that your privacy is protected. We shall ask you to provide certain information by which you can be identified when using this website, then you can be assured that it will only be used in accordance with this privacy statement.
Scanflow may change this policy from time to time by updating this page. You should check this page from time to time to ensure that you are happy with any changes.
What We Collect
We may collect the following information:
Name and job title
Contact information including email address
Demographic information such as postcode, preferences and interests
Other information relevant to customer surveys and/or offers
What we do with the information we gather
We require this information to understand your needs and provide you with a better service, and in particular for the following reasons:
Internal record keeping.
We may use the information to improve our products and services.
We may periodically send promotional emails about new products, special offers or other information which we think you may find interesting using the email address which you have provided.
From time to time, we may also use your information to contact you for market research purposes. We may contact you by email, phone, fax or mail.
We may use the information to customize the website according to your interests.
Security
We are committed to ensuring that your information is secure. In order to prevent unauthorized access or disclosure, we have put in place suitable physical, electronic and managerial procedures to safeguard and secure the information we collect online.
How we use cookies
A cookie is a small file which asks permission to be placed on your computer’s hard drive. Once you agree, the file is added and the cookie helps analyze web traffic or lets you know when you visit a particular site. Cookies allow web applications to respond to you as an individual. The web application can tailor its operations to your needs, likes and dislikes by gathering and remembering information about your preferences.
We use traffic log cookies to identify which pages are being used. This helps us analyze data about webpage traffic and improve our website in order to tailor it to customer needs. We only use this information for statistical analysis purposes and then the data is removed from the system.
Overall, cookies help us provide you with a better website, by enabling us to monitor which pages you find useful and which you do not. A cookie in no way gives us access to your computer or any information about you, other than the data you choose to share with us.
You can choose to accept or decline cookies. Most web browsers automatically accept cookies, but you can usually modify your browser setting to decline cookies if you prefer. This may prevent you from taking full advantage of the website.
Links to other websites
Our website may contain links to other websites of interest. However, once you have used these links to leave our site, you should note that we do not have any control over that other website. Therefore, we cannot be responsible for the protection and privacy of any information which you provide whilst visiting such sites and such sites are not governed by this privacy statement. You should exercise caution and look at the privacy statement applicable to the website in question.
Controlling your personal information
You may choose to restrict the collection or use of your personal information in the following ways:
Whenever you are asked to fill in a form on the website, look for the box that you can click to indicate that you do not want the information to be used by anybody for direct marketing purposes
If you have previously agreed to us using your personal information for direct marketing purposes, you may change your mind at any time by writing to or emailing us at info@scanflow.ai We will not sell, distribute or lease your personal information to third parties unless we have your permission or are required by law to do so. We may use your personal information to send you promotional information about third parties which we think you may find interesting if you tell us that you wish this to happen. If you believe that any information, we are holding out from you is incorrect or incomplete, please write to or email us as soon as possible at the above address. We will promptly correct any information found to be incorrect.